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We show that the presence of  nontrivial gauge interactions can correspond to 
passing from some integrable to nonintegrable distributions transverse to the 
fibers of  an appropriate principal G-bundle over M. In this way we obtain a 
whole family of  new Lagrangians, one for each nontrivial element of  
Hom(~rlM, Q). For the trivial map yEHom(TrlM, Q) we obtain the known 
Yang-Mills equations. In this way, for example, the "sectors" for electromagnetic 
interactions can correspond to the family of  inequivalent spinor structures over 
M. 

1. INTRODUCTION 

In this paper we consider gauge theories from a slightly different point 
of view. Namely, we are especially interested in a horizontal distribution 
determined by a connection on an appropriate G-bundle P. 

We assume that the presence of Yang-Mills interactions can be 
manifested by the map of  a fiber transverse foliation of P given by a flat 
connection to a vector distribution given by horizontal subspaces. In this 
approach any "vacuum" state of the theory is related to a flat connection. 

For any gauge theory we choose some discrete subgroup Q of  the 
gauge group G. The group Q is given by the experimental data and contains 
elements that represent qualitative "charges" related to a given interaction. 
Now the set Hom(~rlM, Q) numerates all "vacuum" states (or sectors of 
states) of  our theory. 

For the trivial map y c Hom(~rlM, Q) we obtain the known Yang-Mills 
equations. For example, the Lagrangian of the theory will contain the usual 
Christoffel symbols and so on. But for nontrivial 3' our Lagrangian should 
be built using other terms determined just by y [see (27). For example, for 
a U(1) gauge we have the following situation. For any standard Yang-Mills 
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field we have to take into account the whole family of Lagrangians [one 
for each 3' ~ Hom(~ lM,  Q)], which can correspond to inequivalent spinor 
structures of  (M, g). 

This approach suggests that the homotopic properties of a space-time 
manifold cannot be trivial. The dual treatment of  Yang-Mills fields (by 
horizontal distributions) also shows the manner  in which we should relate 
topological properties of  space-time to possible interactions. 

In this paper  we assume that a base manifold of P is an open spin 
space-time manifold. However, at the end we quote the vanishing theorem 
for fiat bundles, which allows us to extend these considerations to other 
cases (which however, in our opinion may be less physical). 

2. Y A N G - M I L L S  FIELDS 

One of the major discoveries of  current physics is the gauge theory (or 
Yang-Mills theory). The background for this theory is given by an appropri-  
ate principal G-bundle P over a semi-Riemannian space-time manifold M. 
The Yang-Mills field then is the curvature f~p of a connection Vp on P. 

The action of G on P allows us to map each element X of the Lie 
algebra g of  G into a vector field X on P called a fundamental  vector field. 
The set of  all these vertical vector fields span the so-called vertical distribu- 
tion V on P. [Let us recall that by a p-dimensional  distribution on a manifold 
P (p-< dim P)  we understand a function defined on P that assigns to each 
n c P a p dimensional linear subspace of the tangent space T,P.] 

A connection form on P is the g-valued differential 1-form to, which 
assigns to each vertical vector J~ a corresponding element X c g and is 
equivalent, i.e., satisfies the following condition: 

R ' t o ( A )  = ada - l t o (A )  (1) 

for every element a ~ G and for any vector field A c F(TP).  
Dually we can tell that the connections of  the principal bundle P is 

precisely the equivariant distribution H on P given by the kernel of  w, i.e., 

/4. = Ker to. c T.P, for every n c P (2) 

and 

H.a = R*aH. c T.aP, for every a c G (2') 

Moreover, we have 

H @  V =  TP (3) 

The horizontal distribution H is integrable if and only if a connection is 
flat. Namely, by the structure equation 

f~p = dw + �89 to] (4) 
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we have for horizontal vectors Y and Z 

o , ( Y .  z )  = ato( Y. z )  = Yto ( z )  - Zoo(Y)  - to[ r'. z ]  
(5) 

= toE Y. Z ]  

So the structure equation shows that for horizontal Y, Z 

~'~p( Y~ Z)  = 0r162 dto( Y,, Z )  = 0 (6) 

This means that H is involutive if and only if the condition (6) is satisfied, 
i.e., if and only if the curvature l)p = 0. In this case the integrable distribution 
H defines a codimension q (q = dim G) foliation f f  which is transverse to 
the fibres. The local submersions (see Appendix A) which determine this 
foliation are locally defined maps 

f :  P ~ G (7) 

such that 

to = f * O  (8) 

where 0 is the canonical g-valued Mauer-Car tan  form on G. The Maurer-  
Cartan equation dO +�89 0] = 0 implies 

dto +�89 w] = 0 (9) 

for to given by (8). 
However, in the general case, especially in the cases considered by 

physicists, the connection is not fiat. Yang-Mills fields do not identically 
vanish. Since the absence of Yang-Mills interactions can be related to a 
fiat connection, and their presence to a horizontal nonintegrable distribution 
H, we can try to treat these interactions as some "forces"  that destroy a 
foliation of P. In other words we will see that the presence of Yang-Mills 
interactions can be manifested by a map from an integrable horizontal 
distribution of  some fiat connection to H. Thus, first, we should know how 
many flat connections can exist on P and second, which of  them can 
represent physical "basic"  states. 

It appears  that the map from the canonical flat connection to H gives 
the known Yang-Mills equations. However, we also obtain other equations 
which correspond to maps from other concrete integrable distributions of  
fiat connections (i.e., which correspond to other "basic"  states of  a theory). 
We will see that this is possible due to the following property of  a fiat 
bundle. Namely, if a G-bundle P admits a flat connection, then it can be 
treated as a bundle associated to the universal covering space 37/ of  the 
space-time manifold M. 
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For this let us introduce the notion of the holonomy map h for any 
connection H on P. In a general case a connection on a bundle P - ~ ' M  
defines the map h from the loop space ~ M  of M into G, 

h:f~M-)G (10) 

Namely, let us take any loop o- at Xo ~ M. Let 5 be the unique horizontal 
lift of  o- starting at an arbitrarily fixed point no of the fiber ~r-l(Xo). The 
element h(~r) is then the unique element in G such that no" h(~r) is the 
endpoint of 5. 

Let q be the canonical projection of loops to homotopy classes 

q:~M--) ~IM (11) 

If the parallel transport depends only on the homotopy class of o-, then the 
holonomy map h factorizes through a representation 

y: 7"riM--> G (12) 

i.e., the diagram 

r IM ) G 

q ~ / ~ '  (13) 

~rlM 

commutes. However, it is not a general case. If diagram (13) commutes, 
then our connection is fiat. Moreover, this implies that we can reconstruct 
the bundle P --)~rM as follows. 

Le t /~ /be  the universal convering of M, i.e., the principal bundle over 
M with a group ~rlM acting properly discontinuous on M (Kamber and 
Tandeur, 1975). The group qrlM acts on/V/x  G by the covering transforma- 
tion on the left factor and via 3' on G. 

The orbit space hT/x~, G inherits a right G action and there is a 
canonical bijection 

2VI x~ G~P (14) 

which is G-equivalent and hence a G-bundle isomorphism. In other words, 
we can tell that P can be given as a bundle associated to h) with fiber G 
and action of ~r~M given by 7. 

Since the action of ~r~M preserves the product structure, so the product 
foliation o f / ~  x G arising from M x G-~ G projects a foliation of P. This 
is just the foliation determined by a horizontal distribution of a fiat (discrete 
holonomy group) connection. Thus, we see that if a bundle P -> lrM admits 
a fiat connection, then any leaf of its horizontal distribution looks like a 
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many-valued cross section of  P. In addition, the projection ~r restricted to 
any leaf is a covering map of M. Moreover, the bundle P itself can be 
identified with M • G according to (14). 

Now we have to consider the problem of the existence of a map from 
the integral horizontal distribution of a fiat connection to the nonintegrable 
horizontal distribution H of some general connection on P. Because our 
space-time manifold is open, we can apply the general theory of foliation 
of open manifolds given, among others, by Haefliger (1971), Phillips (1968) 
and Gromov (1969) (see Appendix A). 

According to their results (especially the Phi l l ips-Gromov theorem), 
a continuous codimension-q plane field H on an open manifold P is 
homotopic to a smooth foliation if and only if the quotient vector bundle 
u:= T P / H  is of  foliated type. (This means that there exists a smooth 
codimension-q foliation of u whose leaves are eveywhere transverse to the 
fibers.) 

We see that the quotient bundle u is canonically isomorphic to the 
vertical subbundle V of TP. Further, V is of  foliated type iff P admits a 
fiat connection. 

In this way we come to the following situation in the gauge theory: 

1. Yang-Mills fields define a nonintegrable horizontal distribution H 
on the total space of a principal G-bundle P (being the background 
for a gauge theory). 

2. From the Phi l l ips-Gromov theorem, H is homotopic  to foliation if 
and only if P admits fiat connection. 

3. The presence of Yang-Mills interaction can be manifested by the 
map from a fiber transverse foliation of P (given by a flat connection) 
to a vector distribution (given by horizontal subspaces). 

I f  we accept the above interpretation of the YM interactions, then it 
is natural to assume that any "vacuum"  or " fundamenta l"  state of  a theory 
is related to a fiat connection, i.e., fiat G-bundle P. So the set of  "basic"  
states could be given by the set of maps "/6 Hom(~ ' lM,  G). However, we 
suggest the following picture. 

For any concrete gauge theory related to a concrete Lie group G we 
fix the image Q of y's,  i.e., we fix some discrete subset Q of elements of  
G. With each element of  Q we associate a "qualitative charge" related to 
a given interaction. 

Now, to any map y:Tr~M ~ Q we relate a "vacuum"  state or a sector 
of  possible states of  our theory. 

For example, let G = U(1), i.e., let P be the underlying space for the 
electromagnetic interaction. Because from experiments we have only two 
kinds of  electric charges, Q = z2. Now the set of  "basic" states or the set 
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of sectors of physical states is given by 

Hom('n'lM, Z2) (15) 

Using the Scott and the Greenberg theorems (Whitson, 1973), we obtain that 

Horn(TriM, Z2) ~ HI(M, Z2) (16) 

Further it is well known (Isham, 1978) that the set H~(M, Z2) numerates 
inequivalent spinor structures on M. Thus,  we see that the set of  all 
inequivalent spinor structures on M can be the origin of the different "basic" 
states (or sectors) for electromagnetic interacting fields. 

However, for this picture of YM fields we have to be sure that they 
are defined on a principal G-bundle which admits fiat connection. We will 
see that this assumption does not introduce any physical restrictions for a 
reasonable physical theory based on an open space-time manifold. 

It was said in the introduction that our space-time manifold M is an 
open spin manifold. This means, by the Geroch (1968) result, that M is 
parallelizable. Moreover, it implies that any SU(n) principal bundle over 
M [or, more generally, and G-bundle with G/SU(n)  equivalent to a cell, 
for example, for SL(2, C)] has to be trivial (Isham, 1978) for n - 2. 

In addition, the electromagnetic U(1) bundle also has to be trivial 
when we accept its natural origin as, for example, given in Bugajska (1985). 

In this way we see that principal bundles over a Lorentzian space-time 
manifold that are backgrounds for considered gauge theories admit fiat 
connections. 

Let us consider the problem of possible dynamical equations. Let P 
be some principal G-bundle as above with a fixed global trivialization 
o-: M --> P. Now any connection on P = M x G is completely determined by 
horizontal subspaces at points M • {e} (Kobayashi and Nomizu, 1963). Let 
H(x,e~ be spanned by 

H(x,e) = {ei(x) + Y~(x)} (17) 

where {ei(x)} is a global field of orthonormal frames on M and Y~(x) 
Lie algebra g of G. Using the connection 1-form to, we can write 

w(x.e)(ei(x)) = -- Y/(x) (18) 

and 

w(x,a)(e,(x)) = -ada -1Y~(x), Va ~ G (19) 

So the 1-form of a connection is determined by a g-valued 1-form, say w, 
on M 

w = ~r*to (20) 
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and 

H~x,~) = {e,(x) - w(ei(x))} (21) 

Let us consider another connection w' on P which is induced by such a 
1-form w' that 

Then 

w'( ei(x) ) = - w (  ei(x) ) (22) 

w~x,a~(ei(x))=-w~x,,~(ei(x)), V x e M ,  V a e G  (23) 

We can easily check that for any vector field A on P 

A(x, a) = Y~ ai(x ,  a)ei(x) + Y a'~(x, a)E,~ (24) 
i o~ 

where E~ are generators of  G, we have 

�89 + w')a(x ,  a)=a'~(x ,  a)E,~ 

This means that 

(25) 

�89 + co') = p* O (26) 

where p : M • G ~ G. (We recall that a gobal trivialization of P = M • G is 
given by a global section or.) By (23), we see that the Christoffel symbols 
of  connections co and w' are equal up to sign. From (26) we obtain that 
�89 + w') is the canonical flat connection on the trivial bundle P. It corre- 
sponds to a foliation, or equivalently, to a basic state given by the trivial 
map y c  Hom(~qM, Q). 

In our approach we understand the presence of Yang-Mills interactions 
as some "forces"  that destroy a foliation of P (i.e., change some "basic"  
noninteracting state to an interacting one). However, we should consider 
the whole family of  foliations of  P (i.e., "basic"  states) given by the set 
Hom(Tr, M, Q). But how can these nontrivial "basic"  states be incorporated 
into a theory? We can see that to any connection w' on P and to any "basic"  
state y ~ H o m ( r r i M ,  Q) we can relate a unique connection w such that 
locally 

�89 + w') =f*O (27) 

For this we have to show that local functions f :  P-~ G are determined by 
3'. Let us recall that any element y defines P as M • G. In other words, 
every element of  P can be treated as a class 

[fit, a]~, = (fit, a)TriM = [trip, y(p-1)a]v , Vp ~ ~ l M  (28) 
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Let {Us} be a contractible open covering of M. Let {rh~} be a local 
trivialization of s  related with {U.}. From (28) we see that a local map 
f~ :  P ~  G 

= (29) f~[rn,~, a]:, a 

is different for different y as well as that a set {f~} determines a concrete 
foliation of P by pullback of the Maurer-Car tan  form. 

In this way we have obtained that for the trivial map y we have known 
equations [i.e., to in (26) is just the connection considered by physicists], 
but besides we should consider the whole class of  dynamical equations with 
o) given by (27) and (29). For example, for U(1) gauge it corresponds to 
the inclusion of the whole family of  inequivalent spinor structures in to a 
theory. 

This approach suggests that the homotopic  properties of  a space-time 
manifold cannot be trivial. Also this approach shows in which manner  we 
should relate topological properties of  space-time with possible interactions. 
Namely, the qualitative "charges" given by a concrete interaction have to 
be obtained as an image of ~'IM. I f  M is simply connected, then any 
principal G-bundle that admits a flat connection has to be trivial and the 
flat connection has to be isomorphic with the canonical one (Kobayashi  
and Nomizu, 1963). In this case we have only one "basic"  state and only 
standard equations. 

It seems that this interpretation of Yang-Mills  fields as well as the 
definition of "basic" states as a foliation of P (or flat connection) can be 
generalized to compact manifolds and the larger family of  Lie groups. But 
for this we should describe more precisely the necessary condition for a 
flatness principal bundle (see Appendix B). 

APPENDIX A 

Let N and N '  be two manifolds of  respective dimensions n and n'; 
n -> n'. A map ~-" N--> N '  is called submersion if 

d ~ :  T~N ~ T~(x )N '  

is surjective Vx e N. 
A codimension-q foliation ~ of N is a decomposit ion of N into a 

union of disjoint connected codimension-q submanifolds N = I , . J ~ E ~  
called the leaves of foliation. Moreover, for each x e N there is a neighbor- 
hood U of x and a smooth submersion ~ru: U-->R q such that ~.~l(y), 
y G R q, is a leaf of  ~ ]u ,  the restriction of the foliation to U. 

Let N be a manifold with a smooth, codimension-q foliation ~- defined 
by local submersions ~ u  : U ,  ---> R q (here { U~} is an open covering of N) .  
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For any manifold P we define the space Trans(P, N~) of smooth maps that 
are transverse to ~. (We recall that a mapping f : P - ~ N  is said to be 
transverse to ~- provided each of the compositions % of  is a submersion 
of f - l ( u , )  into Rq.) Of course, for f ~  Trans(P, N~), f * f f  given by the 
local submersions 

"n',~of: f-~(U~)..+ R q (A1) 

is a codimension-q foliation of P. 
Now let us consider the space Epi( TP, v~))  of continuous bundle maps 

from the tangent bundle TP of P to the normal bundle v(ff)  of the foliation, 
which is an epimorphism on each fiber. [We recall that the collection of 
spaces tangent to the leaves of foliation is called the tangent bundle of the 
foliation and is usually denoted by r ( ~ ) .  The quotient bundle T N / r ( ~ )  
is called the normal bundle of foliation and is usually denoted by v(~) . ]  

There is a natural continuous map 

X :Trans(P, N~) ~ Epi(TP, v (~ ) )  (A2) 

given by 

x ( f )  = p o d f  (A3) 

where df: TP + TN  is a differential o f f  and p:  T N  ~ v(3;) is the projection. 
The space Epi is considerably larger than Trans. The starting fact for open 
manifolds is the following theorem (Lawson, 1974). 

Theorem (Gromov-Phillips). For any open manifold P the map X in 
(A2) is a weak homotopy equivalence, that is, it induces isomorphisms on 
all homotopy and homology groups. 

From this theorem we obtain that in particular X establishes a one-to- 
one correspondence between the connected component,  i.e., ~'o of  these 
two spaces. Thus we conclude that every codimension-q plane field D that 
can be written as D = Ker/3 for some/3 ~ Epi(TP, v(~-)) is a homotopic to 
a foliation. 

Now we have the following problem: Given a horizontal plane H on 
a principal bundle P determined by a 1-form of  connection to, is it homotopic 
to a transverse to the fibers of  P foliation? In other words, can we find N, 
~, and/3 so that the relation 

H = Ker/3 (A4) 

To solve this problem, let us follow an idea of  Milnor (1957). He has defined 
N in a canonical way as the total space of the quotient vector bundle 
v = TP/H.  In our case v is isomorphic to the vertical subbundle V of TP 
[see (3)3. 
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We say that a q-dimensional vector bundle V ~  M is of foliated type 
if there exists a smooth codimension-q foliation of V whose leaves are 
everywhere transverse to the fibers. Then for any leaf of this foliation the 
projection into M is a local diffeomorphism. 

Now we have the following lemma (Lawson, 1974). 

Lemma. Let P be an open manifold. Then a continuous codimension-plane 
field H on P is homotopic to a smooth foliation if and only if the quotient 
vector bundle v = T P / H  is of  foliated type. 

APPENDIX B 

In a general case the flatness of a bundle can be expressed in purely 
topological terms. For this let us look at the characteristic classes of flat 
bundles. 

Let BG be the classifying space of G (Husemoller, 1966), i.e., any 
principal G-bundle P over M can be induced from the universal bundle 
over BG by a classifying map 

s~: M-~ BG (B1) 

(s ~ is determined by P up to homotopy.) The universal covering bundle ~/  
of M is classified by a map 

~ : M-~ B'rrlM (B2) 

Now P is flat if and only if there exists a homomorphism 3' : ZrlM ~ G such 
that the diagram 

B3' 
B'rrlM ~ BG 

M 

commutes up to homotopy (Milnor, 1957). Again we see that if M is simply 
connected, then BcrIM is contractible and P has to be a trivial bundle. 

Diagram (B3) induces a commutative diagram of cohomology groups 

(B~,)* 
H*(B~rlM) ~ H * B G  

~ * ~  / *  (B4) 

H * M  

It can be seen that H*(B~r lM)~  H*(~rlM). Now, because ~* factorizes 
through H*(BTr1M), the cohomological properties of the fundamental 
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group ~'IM, reflected in ~:*. For example, if ~-IM is finite, then the rational 
cohomology group H~(TrIM, Q) = 0 for i > 0. Thus, the rational characteris- 
tic classes of P are in this case trivial. In a general case we have the following 
vanishing theorem (Kamber and Tonleur (1968). 

Theorem. Let M be a CW complex and P a fiat G-bundle on M. 
Suppose G has finitely many path-connected components and is either a 
compact or a complex and reductive Lie group. Then the characteristic 
homomorphism 

~:*: H*( BG, R) -> H*( M, R) (B5) 

is trivial, i.e., zero in positive degrees. [The coefficient field in (B5) may be 
replaced by any field of characteristic zero.] 

If G is compact, then this result follows from the Chern-Weil theorem 
(Pittie, 19 ), representing the characteristic classes of P by polynomials 
in the curvature form of a connection in P. 

For various other classes of Lie groups G there are examples of flat 
G-bundles with nontrivial real characteristic classes. These characteristic 
classes cannot be determined by the curvature form of any connection in 
P; there is also no Chern-Weil theorem in these cases. 
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